NP问题 总结与认识

算法学习 专栏收录该内容
10 篇文章 0 订阅

  在算法学习的总结过程中,NP问题的研究常常会让我不太理解。趁着这次对软考算法学习的总结,再次翻看书页修订自己的知识网。
  在学习中,会发现 P类问题、NP类问题、 NP-Hard 问题等 区分。为了对它们之间的关系有一个直观的认识,所以附上一张图。

  由于数学家们无法证明P=NP 所以,会有两种情况下的关系:
NP问题

  P问题(Polynomial,多项式).P问题是可以在多项式时间内被确定机(通常意义的计算机)解决的问题。

  NP问题是指非确定性多项式(non-deterministic polynomial,缩写NP)。所谓的非确定性是指,可用一定数量的运算去解决多项式时间内可解决的问题。

  NP-hard是其解的正确性能够被“很容易检查”的问题,这里“很容易检查”指的是存在一个多项式检查算法。相应的,若NP中所有问题到某一个问题是图灵可归约的,则该问题为NP困难问题。

以上描述来自一些专业研究者的描述,下面说说我自己的认识:

P类问题: 能在多项式时间内判定数据库是否有用户1信息。

NP类问题: 能在多项式时间内判定你已有的信息(如:用户1)是否证明了这个问题(用户1信息存在数据库)。

一点点深入学习了解其中的内涵,荣幸与您分享~

  • 0
    点赞
  • 17
    评论
  • 1
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

相关推荐
©️2020 CSDN 皮肤主题: 程序猿惹谁了 设计师:白松林 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值